AP CALCULUS BC Unit 1 Outline – Limits and Continuity

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/12	WELCOME	Welcome to AP Calculus BC!
		Sign up for AP Classroom
HOMEWORK		

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
DATE 8/13	CONCEPT LIMITS REVIEW	IN-CLASS SAMPLE PROBLEMSHandout - Associating Limits with GraphsEvaluate each limit, if it exists.Ex. 1 $\lim_{x \to 3} (x^2 - 2x + 5)$ Ex. 2 $\lim_{x \to -3} \frac{x^4 + x^2 - 1}{x^2 + 4}$ Ex. 3 $\lim_{x \to -2} \frac{x^3 - 1}{x + 2}$ Ex. 4 $\lim_{x \to 2} \frac{x - 2}{x^2 - 4}$ Ex. 5 $\lim_{x \to -2} \frac{x - 2}{x^2 - 4}$ Ex. 6 $\lim_{x \to 0} \frac{\sin x}{x}$ Ex. 7 For $f(x) = \begin{cases} 4 + x^2, & x < 0 \\ x - \cos x, & x > 0 \end{cases}$, evaluate $\lim_{x \to 0} f(x)$.
Номежо	DRK	Worksheet 1

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/14	LIMITS INVOLVING INFINITY	Define: Horizontal Asymptote; Vertical Asymptote
		Handout – Limits Involving Infinity and Asymptotes Evaluate each limit as either ∞ or $-\infty$. Ex. 1 $\lim_{x\to 0^+} \frac{-1}{6x}$ Ex. 2 $\lim_{x\to 3^+} \frac{5}{x-3}$ Ex. 3 $\lim_{x\to 5^-} \frac{x+3}{x-5}$
		Principle of Dominance (Order of Magnitude) Evaluate each limit $x \rightarrow 3$ $x - 5$ $x \rightarrow 5$ $x \rightarrow 5$
		Ex. 4 $\lim_{x \to \infty} \frac{11}{x} - 6$ Ex. 5 $\lim_{x \to \infty} \frac{\sin 14x}{10x}$ Ex. 6 $\lim_{x \to -\infty} \frac{5x^3}{e^x - 4x^3}$
Homework		Worksheet 2

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/15	CONTINUITY	Notes Handout – Continuity
		Ex. 1 Verify that $f(x) = x^2$ is continuous at $x = 2$.
		Ex. 2 Verify if $f(x) = \begin{cases} 3x^2 - 4x, & x < 1 \\ x - 2, & x \ge 1 \end{cases}$ is continuous at $x = 1$
HOMEWORK		Worksheet 3

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/16	CONTINUITY	Types of Discontinuities
		Ex. 1 What type of discontinuity does $f(x) = \frac{1}{x}$ have at $x = 0$?
		Ex. 2 What type of discontinuity does $f(x) = \frac{x-3}{x^2-9}$ have at $x = 3$? At $x = -3$?
		Removing a Discontinuity
		Ex. 3 Define $g(5)$ in a way that extends $g(x) = \frac{x^2 - 25}{x - 5}$ to be continuous at $x = 5$.
		Ex. 4 Let $f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x^2 - 4x + 3}, & \text{when } x \neq 1 \\ k, & \text{when } x = 1 \end{cases}$. Find k to make $f(x)$ continuous.
		Ex. 5 Let $f(x) = \begin{cases} \frac{x^2 - 16}{\sqrt{x} - 2}, & \text{when } x \neq 4 \\ w, & \text{when } x = 4 \end{cases}$. Find w to make $f(x)$ continuous.
HOMEWORK		Worksheet 4

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/19	IVT, EVT, AND REVIEW	Notes Handout
Homework		Worksheet 5

8/20 - Unit 1 Review

8/21 – Exam